362
Views
19
CrossRef citations to date
0
Altmetric
Articles

Optimization and characterization of pullulan production by a newly isolated high-yielding strain Aureobasidium melanogenum

, , , , , , , , & show all
Pages 557-566 | Published online: 07 Apr 2019
 

Abstract

Pullulan is an extracellular water-soluble polysaccharide with wide applications. In this study, we screened strains that could selectively produce high molecular weight pullulan for application in industrial pullulan production. A new fungus strain A4 was isolated from soil and identified as Aureobasidium melanogenum based on colony characteristics, morphology, and internally transcribed spacer analysis. Thin-layer chromatography, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance analysis suggested that the dominant exopolysaccharide produced by this strain, which presented a molecular weight of 1.384 × 106 Dalton in in-gel permeation chromatography, was pullulan. The culture conditions for A. melanogenum A4 were optimized at 30 °C and 180 rpm: carbon source, 50 g/L maltose; initial pH 7; and 8 g/L Tween 80. Subsequently, batch fermentation was performed under the optimized conditions in a 5-L stirred-tank fermentor with a working volume of 3 L. The fermentation broth contained 303 g/L maltose, which produced 122.34 g/L pullulan with an average productivity of 1.0195 g/L/h and 82.32 g/L dry biomass within 120 h. The conversion efficiency of maltose to pullulan (Y%) and specific production rate (g/h/g dry cells) (Qs) reached 40.3% and 0.0251 g/L/g dry cells, respectively. The results showed strain A4 could be a good candidate for industrial production.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by Hainan’s Key Project of Research and Development Plan (NO. ZDYF2017155), the National Natural Science Foundation of China (NSF No. 31400084), the Natural Science Foundation of Shandong Province (No. ZR2014CQ008), the Taishan Scholars Climbing Program of Shandong (No. TSPD20150210), and the Youth Innovation Promotion Association (CAS No. 2017252).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.