291
Views
13
CrossRef citations to date
0
Altmetric
Articles

A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode

ORCID Icon
Pages 961-967 | Published online: 11 Aug 2020
 

Abstract

A new amperometric biosensor was fabricated by means of electropolymerization of L-aspartic acid on a carbon-paste electrode (CPE) for the bioelectrochemical determination of glucose. The electropolymerization process was conducted via cyclic voltammetry (CV). The modified CPE with poly (L-aspartic acid) (PAA) provided free carboxyl groups so as to immobilize the glucose oxidase (GOx), and further, enhanced the electrocatalytic activity of the hydrogen peroxide (H2O2). The biosensor displayed both good stability and good bioactivity. The sensitivity of the prepared biosensor was 5.3 µA cm−2 mM−1. Its linear range extended from 0.05 mM to 1.0 mM, with the low limit of detection (LOD) being 69.2 µM. The Michaelis–Menten constant was found to be 1.17 mM. Furthermore, the biosensor showed good anti-interference ability in relation to dopamine, uric acid, and ascorbic acid. Taken together, these results demonstrate that PAA/CPE is a promising material for the fabrication of glucose biosensor.

Disclosure statement

The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.