139
Views
2
CrossRef citations to date
0
Altmetric
Articles

Lipopeptide production by Serratia marcescens SmSA using a Taguchi design and its application in enhanced heavy oil recovery

, , , & ORCID Icon
Pages 872-884 | Published online: 04 Dec 2021
 

Abstract

Biosurfactant production at reactor level by Serratia marcescens SmSA was optimized and evaluated to enhance the heavy oil recovery on carbonate rocks. Temperature, agitation, and carbon/nitrogen (C/N) ratio were evaluated to optimize biosurfactant production by using a Taguchi (L9) design. The best conditions (C/N ratio: 6, 25 °C, and agitation: 100 rpm) were used to scale up the biosurfactant production with a 3-L bioreactor. The best aeration for biosurfactant production was 0.66 volume of air per volume of liquid per minute (vvm), producing the lowest surface tension (26 mN/m) in 14 h, with a biosurfactant yield of 14.26 g/L as a crude product and 2.85 g/L as a purified product, and a critical micelle concentration of 280 mg/L. The biosurfactant was characterized as a lipopeptide, and it was stable under extreme conditions: pH (2–12), salinity up to 200 g/L, and temperature up to 150 °C confirmed by thermogravimetric analysis. Enhanced oil recovery test was carried out with a carbonate core and heavy oil under reservoir conditions, obtaining an additional recovery of 8%, due to reduced interfacial tension and modified wettability of the rock. These findings highlight the potential application of S. marcescens SmSA biosurfactant in enhanced oil recovery.

Acknowledgement

The authors thank the Instituto Mexicano del Petróleo for funding this research within D.60002, D60012 and D.61042 projects.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research work was funded by the Instituto Mexicano del Petróleo [D.60002, D620012 and D.61021 projects].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.