265
Views
1
CrossRef citations to date
0
Altmetric
Articles

Transcriptome analysis revealing molecular mechanisms of enhanced pigment yield by succinic acid and fluconazole

, , ORCID Icon, , , , , , ORCID Icon & show all
Pages 990-1000 | Published online: 11 Jan 2022
 

Abstract

This study aimed to elucidate the molecular mechanisms through which succinic acid and fluconazole stimulate Monascus pigment biosynthesis under liquid fermentation conditions. The pigment yield was significantly improved by adding 0.35 g·L−1 succinic acid or 1.5 g·L−1 fluconazole. Transcriptome sequencing and RT-qPCR confirmation were performed to reveal transcriptome changes. The results indicated that the addition of succinic acid significantly decreased mRNA expression of genes involved in fatty acid biosynthesis while increasing expression of genes involved in pyruvate metabolism. Fluconazole significantly down-regulated transcripts involved in branched-chain amino acid metabolism, fatty acid metabolism, glycolysis/gluconeogenesis, and pyruvate metabolism, as well as the generation of acetyl-CoA for pigment biosynthesis. On the other hand, nitrogen metabolism and lysine degradation pathways were significantly enriched, which could stimulate the generation of acetyl-CoA. Therefore, the mechanism for enhancing pigment yield may be attributed to the competitive regulation of metabolic pathways toward acetyl-CoA biosynthesis. Additionally, up-regulation of some different key genes in the presence of fluconazole or succinic acid was involved in improving pigment production. This study deepens the theoretical understanding for enhancing pigment biosynthesis and provides a few potential approaches for improving pigment yield.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was financially supported by the Open Project Program of the State Key Laboratory of Food Science and Technology, Jiangnan University [No.SKLF-KF-201902], the opening foundation of the Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU) [Grant No. 20171006], and the National College Students’ Innovation and Entrepreneurship Training Project [Grant No. 202010373027, 202110373018].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.