344
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Production of codon-optimized Human papillomavirus type 52 L1 virus-like particles in Pichia pastoris BG10 expression system

, , , , , , & show all
Pages 148-156 | Published online: 18 Mar 2022
 

Abstract

Cervical cancer caused by Human papillomavirus (HPV) is one of the most common causes of cancer death in women worldwide. Even though the disease can be avoided by immunization, the expensive price of HPV vaccines makes it hard to be accessed by women in middle-low-income countries. Thus, the development of generic HPV vaccines is needed to address inequalities in life-saving access. This study aimed to develop the HPV52 L1 VLP-based recombinant vaccine using Pichia pastoris expression system. The l1 gene was codon-optimized based on P. pastoris codon usage resulting CAI value of 0.804. The gene was inserted into the pD902 plasmid under the regulation of the AOX1 promoter. The linear plasmid was transformed into P. pastoris BG10 genome and screened in YPD medium containing zeocin antibiotic. Colony of transformant that grown on highest zeocin concentration was characterized by genomic PCR and sequencing. The positive clone was selected and expressed using BMGY/BMMY medium induced with various methanol concentrations. The SDS-PAGE and Western blot analyses showed that 55 kDa L1 protein was successfully expressed using an optimum concentration of 1% methanol. The self-assembly of HPV52 L1 protein was also proven using TEM analysis. Moreover, we also analyzed the B-cell epitope of HPV52 L1 protein based on several criteria, including antigenicity, surface accessibility, flexibility, and hydrophilicity. We assumed that epitope 476GLQARPKLKRPASSAPRTSTKKKKV500 could be developed as an epitope-based vaccine with a neutralizing antibody response toward HPV52 infection. Finally, our study provided the alternative for developing low-cost HPV vaccines, either VLP or epitope-based.

Graphical Abstract

Disclosure statement

The authors declare that they have no competing interests.

Additional information

Funding

This research was supported by the LPDP research grant from Indonesian Ministry of Finance, under the program of development of research cell bank (RCB) for HPV recombinant vaccine during 2020–2021 fiscal years.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.