298
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Comparative study of response surface methodology and artificial neural network for optimization of process parameters for synthesis of gold nanoparticles by Desmostachya bipinnata extract

, & ORCID Icon
Pages 195-206 | Published online: 20 Apr 2022
 

Abstract

Green synthesis of nanoparticles has gained attention due to its eco-friendly and sustainable approach to synthesize nanoparticles at a reduced cost. Artificial neural network (ANN) and response surface model (RSM) are important to reduce experimental efforts in nanoparticle synthesis. In this work, optimization of gold nanoparticle synthesis by Desmostachya bipinnata extract was performed using the volume of plant extract, concentration of auric chloride, reaction time, pH, and temperature as process parameters, and the output was absorbance. The experimental design was obtained from RSM and the model was optimized further using ANN. Thirty-two experimental runs generated by RSM were performed and the results obtained experimentally were compared with those generated by RSM and ANN. Different algorithms of ANN were tested to obtain the best one. The optimization studies resulted in a maximum response for 20th run with 15 ml, 2.5 mM, 45 min, 7, and 40 °C as parameters. Optimized input parameters obtained by RSM were 10 ml, 2 mM, 30 min, 6, and 30 °C. The formation of gold nanoparticles was confirmed by UV spectroscopy, XRD, and SEM. Different algorithms of ANN, such as leven marquardt, scaled conjugate gradient, and bayesian network were used. Leven marquardt algorithm was found to be the most suitable algorithm for the current study.

Graphical Abstract

Acknowledgments

The authors are thankful to the National Institute of Technology, Raipur, India, for providing the necessary facilities to prepare the manuscript and permission to publish it.

Disclosure statement

The author declares no conflict of interest, financial or otherwise.

Data availability statement

The data supporting the findings of the article is available within the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.