613
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial, antibiofilm, and anticancer potential of silver nanoparticles synthesized using pigment-producing Micromonospora sp. SH121

, , , , &
Pages 475-487 | Published online: 20 Jul 2022
 

Abstract

Silver nanoparticles (AgNPs) have gained interest as an alternative pharmaceutical agent because of antimicrobial resistance and drug toxicity. Considering the increasing request, eco-friendly, sustainable, and cost-effective synthesis of versatile AgNPs has become necessary. In this study, green-made AgNPs were successfully synthesized using Micromonospora sp. SH121 (Mm-AgNPs). Synthesis was verified by surface plasmon resonance (SPR) peak at 402 nm wavelength in the UV-Visible (UV-Vis) absorption spectrum. Scanning electron microscopy (SEM) analysis depicted that Mm-AgNPs were in the size range of 10–30 nm and spherical. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of bioactive molecules on the surface of nanoparticles. The X-ray diffraction (XRD) analysis revealed the face-centered cubic (fcc) structure of the Mm-AgNPs. Their polydispersity index (PDI) and zeta potential were 0. 284 and −35.3 mV, respectively. Mm-AgNPs (4–32 µg/mL) exhibited strong antimicrobial activity against Bacillus cereus, Enterococcus faecalis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas putida, Staphylococcus epidermidis, Streptococcus pneumoniae, and Aspergillus flavus. Mm-AgNPs partially inhibited the biofilm formation in Acinetobacter baumannii, E. coli, K. pneumoniae, and Pseudomonas aeruginosa. Furthermore, results showed that low concentrations of Mm-AgNPs (1 and 10 µg/mL) caused higher cytotoxicity and apoptosis in DU 145 cells than human fibroblast cells. Based on the results, Mm-AgNPs have an excellent potential for treating infectious diseases and prostate cancer.

Disclosure statement

No potential conflict of interest was reported to the author(s).

Additional information

Funding

This study was supported by the Research Fund of Mersin University with project number 2019-1-AP4-3355.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.