78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Kinetics of dye decolorization using heterogeneous catalytic system with immobilized Achromobacter xylosoxidans DDB6

, , , &
Pages 691-699 | Published online: 01 Nov 2023
 

Abstract

Textile effluents containing toxic dyes must be treated effectively before discharge to prevent adverse environmental impacts. Traditional physical and chemical treatment methods are costly and generate secondary pollutants. In contrast, biological treatment is a more suitable, clean, versatile, eco-friendly, and cost-effective technique for treating textile effluent. It is well established that indigenous microbial populations present in effluents can effectively degrade toxic dyes. In this regard, Achromobacter xylosoxidans DDB6 was isolated from the effluent sample to decolorize crystal violet (CV), Coomassie brilliant blue (CBB), and alizarin red (AR) by 67.20%, 28.58%, and 20.41%, respectively. The growth parameters of A. xylosoxidans DDB6 in media supplemented with 100 ppm of various dyes were determined using the modified Gompertz growth model. The immobilized cells in calcium alginate beads showed apparent decolorization rate constant of 0.27, 0.18, and 0.13 h−1 for CV, CBB, and AR, respectively. The immobilized cells in a packed bed reactor with an optimum flow rate of 0.5 mL/min were used to treat 100 ppm of CV with a percentage decolorization of 79.47% after three cycles. Based on the findings, A. xylosoxidans DDB6 could be effectively used for decolorization of various dyes.

Acknowledgments

All the authors acknowledge Dr. Vidhya Incubation Centre of KIT-Kalaignarkarunanidhi Institute of Technology (Autonomous) for providing the resources necessary to complete this study.

Disclosure statement

The authors have no financial or non-financial interests to disclose.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.