44
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Soot Particles Emitted from a Modern Light Duty Diesel Engine Running in Different Operating Conditions using Field Flow Fractionation and Granulometric Techniques

, , , &
Pages 1525-1546 | Received 06 Feb 2007, Accepted 25 Feb 2007, Published online: 10 Apr 2007
 

Abstract

Soot particles emitted from a light duty (LD) Volkswagen diesel engine running at different operating points (speed and torque levels) are analyzed for mean size determination using a laser‐based three Wavelength Extinction Method (3‐WEM). For this reason, collected soot samples are suspended using an appropriate sample preparation technique with optimized conditions of sonication as it revealed its effect on the soot mean particle size measured by 3‐WEM.

An online Scanning Mobility Particle Analyzer (SMPS) is also used to measure soot emission at identical engine operating points. Size values obtained from SMPS are lower than those of suspended soot samples obtained from 3‐WEM. The size discrepancies are mainly related to the required sample preparation procedure employed for 3‐WEM measurements. The engine operating points affect, differently, the size measurements obtained from SMPS and 3‐WEM.

Sedimentation Field‐Flow Fractionation (SdFFF) is used for density determination of soot samples based on size measurements of fractions collected at peak maxima of fractograms using the off‐line hyphenation with 3‐WEM. It is assumed that a size dependent separation of soot particles occurred with a uniform particle density over the whole size distribution. An average density value is used for the conversion of soot fractograms to size distributions. Discrepancies are also found with size distribution profiles obtained from SMPS for the same engine operating points, due to the sample preparation procedure employed for SdFFF measurements.

Acknowledgment

The French League Against Cancer (comité de la Creuse) is gratefully acknowledged for the financial support of this research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 583.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.