283
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A prodrug approach to enhance azelaic acid percutaneous availability

, , , &
Pages 578-586 | Received 02 Jan 2016, Accepted 13 May 2016, Published online: 27 Jun 2016
 

Abstract

Azelaic acid is a dicarboxylic acid compound used in treatment of acne vulgaris. However, high concentration (ca 20%) is needed to guarantee the drug availability in the skin. The latter increases the incidence of side effects such as local irritation. The prodrug strategy to enhance azelaic acid diffusion through skin was not reported before. Thus, a lipophilic prodrug of azelaic acid (diethyl azelate [DEA]) was synthesized and investigated to improve percutaneous availability of azelaic acid, with a subsequent full physical, chemical, and biological characterization. Expectedly, DEA exhibited a significant increase in diffusion compared to azelaic acid through silicone membrane. In contrast, the diffusion results through human stratum corneum (SC) displayed weaker permeation for DEA with expected retention in the SC. Therefore, a desorption study of DEA from SC was conducted to examine the reservoir behavior in SC. Results showed an evidence of sustained release behavior of DEA from SC. Consequently, enhancement of keratolytic effect is expected due to azelaic acid produced from enzymatic conversion of DEA released from SC.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.