128
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Concurrent study of stability and cytotoxicity of a novel nanoemulsion system – an artificial neural networks approach

, , &
Pages 383-389 | Received 03 Oct 2015, Accepted 03 Jun 2016, Published online: 25 Oct 2016
 

Abstract

Problems commonly associated with using nanoemulsions are their cytotoxic effects and low stability profiles. Here, for the first time, concentrations of ingredients of a nanoemulsion system were investigated to obtain the most stable nanoemulsion system with the least cytotoxic effect on MCF7 cell line. Artificial neural networks (ANNs) were used to model the experimentally obtained data. Surfactant concentration was found to be the dominant factor in determining the stability – surfactant concentration above a critical point made the preparation unstable, while it appeared not to be influencing the cytotoxicity. Concentration of oil showed a direct relationship to the cytotoxicity with a minimum value required to provide an acceptable safety profile for the preparation. Co-surfactant appeared not to be considerably effective on neither stability nor cytotoxicity. To obtain the optimum preparation with maximum stability and minimum cytotoxicity, surfactant and oil values need to be kept at their maximum and minimum possible, respectively.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.