243
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Novel pH-triggered biocompatible polymeric micelles based on heparin–α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer

, , , , &
Pages 492-509 | Received 26 Aug 2019, Accepted 31 Dec 2019, Published online: 13 Jan 2020
 

Abstract

In this study, pH-triggered polymeric micelle comprising α-tocopherol (TOC) and heparin (HEP) was developed and loaded with docetaxel (DTX). The amphiphilic copolymer was synthesized by grafting TOC onto HEP backbone by a pH-cleavable bond. DTX-loaded micelles were characterized in terms of critical micelle concentration (CMC), particle size, zeta potential, entrapment efficiency (EE), pH-responsive behavior, and drug release. In vitro cytotoxicity of the micelles against breast cancer cells was investigated by MTT assay. The cellular uptake of coumarin-loaded micelles was also evaluated. Furthermore, the pharmacokinetics of DTX-loaded micelles was evaluated and compared with that of Taxotere®.

HEP–CA–TOC copolymers showed low CMC values and high EE. At pH 7.4, the micelles remained stable in size and shape, whereas considerable changes in particle size and morphology were observed at pH 5.5. DTX-loaded micelles showed pH-dependent drug release profiles. Coumarin-loaded micelles showed higher cellular uptake than free coumarin. Therefore, the DTX-loaded micelles showed more toxicity against breast cancer cells than free DTX. A significant increase in T1/2 β, AUC0-∞ and MRT was observed in DTX-loaded micelle treated group as compared to the group treated with Taxotere®.

The results suggest that the pH-sensitive HEP-modified micelles could be promising for enhanced intracellular drug delivery of DTX for cancer treatment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Vice Chancellery of Isfahan University of Medical Sciences and the Iran National Science Foundation (INSF) [grant number 96014296].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.