579
Views
44
CrossRef citations to date
0
Altmetric
Research Articles

Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN)

, ORCID Icon, , & ORCID Icon
Pages 832-844 | Received 14 Oct 2018, Accepted 14 Mar 2020, Published online: 23 Mar 2020
 

Abstract

Glycerol monostearate solid lipid nanoparticles (SLN) were produced by hot high-pressure homogenization technique to load alpha-pinene, citral, geraniol or limonene. SLN were composed of 1 wt.% monoterpene, 4 wt.% of Imwitor® 900K as a solid lipid and 2.5 wt.% of Poloxamer188 as a surfactant. Empty SLN consisted of 5 wt.% of Imwitor® 900K and 2.5 wt.% of Poloxamer188. The mean particles size (Z-Ave) and polydispersity index (PDI) of SLN were analyzed by dynamic light scattering (DLS), while the zeta potential (ZP) of each formulation were measured by electrophoretic light scattering. LUMiSizer® was applied to calculate the velocity distribution in the centrifugal field and instability index. Drug release profile from SLN was analyzed using Franz cell diffusion cells assayed by UV–Vis spectrophotometry, whereas the gas chromatography technique was applied to determine the encapsulation parameters of volatile monoterpenes. The matrix state, polymorphism and phase behavior of SLN were studied by X-ray diffraction (XRD, low and wide angles) and differential scanning calorimetry (DSC). Selected monoterpenes were successfully loaded in glycerol monostearate SLN. A burst release profile within the first 15 min was observed for all formulations, being the modified release profile dependent on the type of monoterpene and on the encapsulation efficiency.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors acknowledge the financial support received from Portuguese Science and Technology Foundation (FCT/MCT) and from European Funds (PRODER/COMPETE) under the project reference [M-ERA-NET/0004/2015-PAIRED and UIDB/04469/2020] (strategic fund), co-financed by FEDER, under the Partnership Agreement [PT2020].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.