144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of nanovesicular carriers of a poorly soluble drug using factorial design methodology and artificial neural network by applying quality by design approach

, , &
Pages 1035-1050 | Received 23 Dec 2020, Accepted 09 Sep 2021, Published online: 23 Sep 2021
 

Abstract

The current work aims to utilize a quality by design (QbD) approach to develop and optimize nanovesicular carriers of a hydrophobic drug. Rosuvastatin calcium was used as a model drug, which suffers poor bioavailability. Several tools were used in the risk assessment study as Ishikawa diagrams. The critical process parameters (CPP) were found to be the particle size, polydispersity index, zeta potential, and entrapment efficiency. A factorial design was used in risk analysis, which was complemented with an artificial neural network (ANN); to assure its accuracy. A design space was established, with an optimized nanostructured lipid carrier formula containing 3.2% total lipid content, 0.139% surfactant, and 0.1197 mg % drug. The optimized formula showed a sustained drug release up to 72 h. It successfully lowered each of the total cholesterol, low-density lipoprotein, and triglycerides and elevated the high-density lipoprotein levels, as compared to the standard drug. Thus, the concurrent use of the factorial design with ANN using the QbD approach permitted the exploration of the experimental regions for a successful nanovesicular carrier formulation and could be used as a reference for many nanostructured drug delivery studies during their pharmaceutical development and product manufacturing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.