326
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design and evaluation of erucic acid-phytosphingosine structured cationic nanoemulsions as a plasmid DNA delivery system against breast cancer cells

, , , ORCID Icon, ORCID Icon, & show all
Pages 145-154 | Received 12 May 2021, Accepted 30 Dec 2021, Published online: 12 Jan 2022
 

Abstract

This study is focused on the preparation and characterization of erucic acid (EA) and phytosphingosine (PS) containing cationic nanoemulsions (NEs) for plasmid DNA (pDNA) delivery. Repurposing of cationic agents guided us to PS, previously used for enhanced interaction with negatively charged surfaces. It was reported that EA might act anti-tumoral on C6 glioma, melanoma, neuroblastoma, and glioblastoma. However, there is only one study about mixed oleic acid-EA liposomes. This gap attracted our interest in the possible synergistic effects of PS and EA on MDA-MB-231 and MCF-7 breast cancer cells. Three cationic NEs (NE 1, NE 2, and NE 3) were prepared and characterized in terms of droplet size (DS), polydispersity index (PDI), and zeta potential (ZP) before and after complexation with pDNA, long-term stability, SDS release, cytotoxicity, and transfection studies. The cationic NEs had DSs of <200 nm, PDIs <0.3, and ZPs > +30 mV. Long-term stability studies revealed that NE 2 and NE 3 were stable. NE 1-pDNA had appropriate particle properties. NE 2 reduced the viability of MDA-MB-231 cells to 11% and of MCF-7 cells to 13% and resulted in the highest number of transfected cells. To sum up, NE 2 containing PS and EA is appropriate for delivering pDNA.

Acknowledgement

Special thanks to Prof. Dr. Özgen Özer from Department of Pharmaceutical Technology for her support during the particle characterization by Zetasizer Nano ZS.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.