194
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Bioequivalence studies and sugar-based excipients effects on the properties of new generic ketoconazole tablets formulations and stability evaluation by using direct compression method

, , , , , , , , , & show all
Pages 530-539 | Received 24 Aug 2008, Accepted 17 Feb 2009, Published online: 30 Mar 2009
 

Abstract

In this work we described the development of a new solid oral formulation of ketoconazole, a broad-spectrum antifungal agent that belongs to the class II of Biopharmaceutics Classification System (BCS). The ketoconazole raw material supplier was selected to present a best flow and compactation. In addition we used direct compression and superdisintegrants associated to polyols to enhance the dissolution of the ketoconazole tablets. The dissolution was evaluated based in level C in vivo/in vitro correlation established. The best formulation was obtained with croscarmellose/maltose association that in the accelerated stability assays presented no differences on quality specifications and no drug-excipients interaction by DSC analyses. In this work it was possible to confirm the use of sugar-based excipients as suitable dissolution enhancers in pharmaceutical technology and real processes conditions.

Acknowledgements

We thank the financial support from Brazilian agencies CNPq, CAPES, FAPERJ, and FUJB.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.