662
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Understanding drug-excipient compatibility: Oxidation of compound A in a solid dosage form

, , &
Pages 556-564 | Accepted 14 Jul 2009, Published online: 11 Sep 2009
 

Abstract

Drug-excipient compatibility studies lay the foundation for designing a chemically stable formulation for clinical and commercial development. This article describes the investigation of oxidative degradation encountered with compound A (a phenylalanine-drug complex) in a capsule dosage form. Two wet- granulation capsule formulations (2.5-mg and 25-mg strengths) were developed using excipients that showed satisfactory stability from initial drug-excipient compatibility studies. Both capsule strengths were chemically stable at 50°C (closed) for at least 18 weeks, but they showed discoloration. The 2.5-mg capsule exhibited degradation after four weeks at 40°C/75%RH (open) besides discoloration. LC/MS analysis indicated that the degradants were oxidation products of the parent compound. Oxidation of compound A was investigated by forced degradation with peroxide, use of isotopically labeled water (H218O) to study the source of oxygen, and use of different antioxidants to mitigate oxidation. Excipient(s) responsible for oxidation and discoloration were identified through extended and modified excipient compatibility studies. The discoloration was indicative of Maillard reaction occurring between a reducing sugar impurity from microcrystalline cellulose and L-phenylalanine in the drug complex. Reactive oxidative species generated by this reaction is postulated to cause oxidation of compound A.

Acknowledgements

The authors would like to thank Drs Frank Hu and Ken Ray for performing UPLC/MS analysis for the degradants. We would also like to acknowledge Drs Ajit Thakur and Munir Hussain for helpful discussions during the course of the study and preparation of this manuscript.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.