103
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere of Festuca arundinacea and Associated Microbial Community Changes

&
Pages 93-104 | Published online: 12 Jan 2007
 

ABSTRACT

A phytoremediation growth chamber study was conducted to evaluate the contribution of soil microbial diversity to the contaminant degradation. Target contaminant removal from soil was assessed by monitoring concentrations of polycyclic aromatic hydrocarbons (PAHs), along with changes in the bacterial community structure over a time period of 10 months in the presence of tall fescue (Festuca arundinacea). Enhanced degradation of PAHs was observed in rhizosphere soil, with a maximum reduction in pyrene at a rate 36% higher than that noted for the unvegetated control. The dissipation of < 4-ring PAHs, 4-ring PAHs, and > 4-ring PAHs in unvegetated soil was 70%, 54%, and 49% respectively, whereas a higher dissipation rate was observed in tall fescue treated soil of 78%, 68%, and 61% at the end of the study. Microbial enumeration results showed greater total bacterial numbers and PAH-degrading bacteria in rhizosphere soil when compared to unvegetated soil. The results from the terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that there was a shift in the rhizosphere bacterial community during the phytoremediation process.

Notes

∗CEC, cation exchange capacity.

∗Letters after value indicate significant difference between vegetated and unvegetated means for each PAH based on a two-sample t test with α of .05. If the letters are different, there is a significant difference between the pairs.

∗Letters after value indicate significant difference between vegetated and unvegetated means for each PAH based on a two-sample t test with α of .05. Different letters indicate a significant difference between the pairs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.