112
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Triarylmethane Dye Decolorization by Pellets of Pycnoporus sanguineus: Statistical Optimization and Effects of Novel Impeller Geometry

, , , &
Pages 305-315 | Published online: 25 Oct 2013
 

ABSTRACT

A study was carried out to optimize selected parameters for decolorization of a triarylmethane dye, such as crystal violet by white rot fungus, Pycnoporus sanguineus, pellets. The parameters studied were initial dye concentration (ppm), agitation speed (rpm), and process time (days) and were optimized using response surface methodology (RSM). It is shown that process time, agitation speed, and their interactions have significant effects on the decolorization process. Following the optimization, the decolorization study was extended to a stirred tank reactor (STR) process. Effects of different geometry of impellers on the decolorization process and power consumption were studied. Novel impeller geometries, such as 180° curved blade and 60° angled blade impellers, were used in the STR. The application of 180° curved blade impeller resulted in higher percentage of decolorization at a relatively less power consumption as compared with 60° angled blade impeller.

ACKNOWLEDGMENTS

The authors acknowledge University of Malaya for research grants RP024-2012A and UM.C/625/1/HIR/ MOHE/05, and they thank Dr. S. Vikineswary from Institute of Biological Sciences, University of Malaya, for providing the fungal strain.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.