330
Views
15
CrossRef citations to date
0
Altmetric
Articles

Assessment of crude oil degradation efficiency of newly isolated actinobacteria reveals untapped bioremediation potentials

&
Pages 133-143 | Published online: 22 Mar 2016
 

ABSTRACT

Bioremediation is gaining favorable attention as a more economical and environmentally friendly technique for the remediation of crude oil hydrocarbons. This makes the search for crude oil–degrading microbes very crucial. In this study, the isolation and identification of actinobacteria in soil samples from a selected crude oil spill site were carried out. Eighteen isolates from different soil depths (20–120 cm) were screened for their ability to grow on crude oil–based medium (COBM). Actinomyces naeslundii, Actinomyces viscosus, Actinomyces israelii, Actinomyces meyeri, and Nocardia formicae from a 20 cm soil depth exhibited higher growth profiles on COBM than on glucose-based medium (GBM). A. viscosus and A. isrealii exhibited 5- and 3-fold increase in growth over GBM and were selected for biodegradation studies. Growth kinetics and residual crude oil were used to measure the degradation efficiency of A. viscosus and A. israeli over varying crude oil concentrations. Surprisingly, A. viscosus and A. isrealii achieved 98% degradation of 10 g/L crude oil in 12 days and 97% degradation of 30, 50, and 75 g/L in 16 and 18 days, respectively. Specific activity of total peroxidase was assayed over the biodegradation period. Peroxidase activity increased with degradation efficiency of A. viscosus and A. isrealii, suggesting that peroxidases play a key role in the crude oil biodegradation process. The unique tolerance exhibited by A. viscosus and A. israelii to crude oil and high crude oil degradation efficiencies indicate their promising potential for bioremediation applications.

Acknowledgments

The authors thank the technical staff of Biotechnology Unit, Federal Institute of Industrial Research Oshodi (F. I. I. R. O), Lagos, Nigeria, for their contribution to the identification of actinobacterial isolates.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.