742
Views
37
CrossRef citations to date
0
Altmetric
Articles

Potential role of bacterial extracellular polymeric substances as biosorbent material for arsenic bioremediation

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 72-81 | Published online: 10 Apr 2019
 

Abstract

Carcinogenic effects of arsenic through consumption of contaminated water are an alarming threat and there is an emergent need to reduce extremely high levels of toxic arsenic from environment. Bacterial biofilms produce polyanionic extracellular polymeric substance (EPS) that is considered an excellent biosorbent material for the remediation of toxic metals and metalloids. This study was aimed to investigate the role of bacterial EPS in arsenic bioremediation. EPS was extracted from biofilm forming and arsenic reducer bacterial strains that were isolated from industrial waste water and characterized biochemically. Fourier transform infrared spectroscopy was also performed to study functional groups. Both Exiguobacterium profundum PT2 and Ochrobactrum ciceri SW1 exhibited enhanced EPS production in the presence of arsenic. Arsenic stress increased protein and carbohydrate contents in the EPS of both bacterial strains as indicated by the peaks of 1363 to 1613 and 1035 to 1218 cm−1 wavenumbers, respectively to cope with arsenic present in the surroundings. Shifting of peaks in As5+ treated samples from 1363 to 1379, 847 to 800 and 1211 to 1134 cm−1 demonstrated the involvement of proteins, carbohydrates and phosphates in the sequestration of arsenic. Scanning electron microscopic examination of EPS revealed structural alterations such as the presence of closely embedded large clumps with interstitial spaces between stacked layers of the EPS of E. profundum PT2 treated with As5+ displayed the enhanced polysaccharide content and arsenic sorption. Therefore, increased production of bacterial EPS with large number of polyanionic functional groups on its surface having tendency to sequester arsenic through electrostatic or covalent interactions presented EPS an excellent biosorbent material for arsenic bioremediation.

Acknowledgments

The Women University Multan is highly acknowledged for providing funds to Miss Saba under Faculty development Program for this study.

Disclosure statement

The authors declared that they do not have any conflicts of interests regarding this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.