244
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

CORRELATION-BASED ESTIMATION OF CUTTING FORCE COEFFICIENTS FOR BALL-END MILLING

&
Pages 287-303 | Published online: 24 May 2012
 

Abstract

This article presents a methodology to estimate cutting force coefficients based on the least squares approximation using correlation factor between the estimated and measured cutting forces in order to determine the corresponding tool angular position. This method can be applied on measured cutting force data over any small interval of time that need not contain information of the time instant when the cutting tool enters the workpiece, which has been the main requirement in the conventional method. This allows a quick estimation of the cutting force coefficients regardless of the chosen cutting conditions and tool-workpiece material, which is often the case in industrial machining processes. This proposed method has been validated by comparison of cutting force coefficients obtained using conventional estimation technique for a slot ball-end milling test. Besides being useful for predictive evaluation of forces, such estimation of cutting force coefficients of the cutting force model can be useful for understanding variations in cutting process over the tool life and can assist in online monitoring and process optimization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.