471
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Influence of High-Pressure Coolant Assistance on the Machinability of the Titanium Alloy Ti555–3

, , &
Pages 134-151 | Published online: 09 Feb 2015
 

Abstract

The origin of this article is the quantification of productivity gains and the improvement in surface integrity seen for a recent titanium alloy that is seeing increasing use in the aeronautical industry. The Ti555–3 titanium alloy, which is starting to find greater application in the aeronautical field, exhibits certain difficulties in terms of machining. High Pressure Coolant (HPC) assisted turning consists of projecting a high pressure coolant jet between the chip and the tool. Comparisons are made between assisted turning using variable jet pressure and conventional turning (dry and classical lubrication). It is shown that it is possible to improve productivity by using HPC-assisted machining. The results highlight good chip fragmentation and a great improvement of tool life with HPC assistance. Surface integrity is also shown to be improved, through surface roughness parameters that decrease, and surface residual stresses that become more compressive. These effects have been attributed to the thermo-mechanical action of the coolant jet resulting in lower cutting forces, lower coefficient of friction and lower temperature in the cutting zone.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.