540
Views
27
CrossRef citations to date
0
Altmetric
Articles

Modeling subsurface deformation induced by machining of Inconel 718

, , , , &
Pages 103-120 | Published online: 31 Jan 2017
 

ABSTRACT

Traditionally, the development and optimization of the machining process with regards to the subsurface deformation are done through experimental method which is often expensive and time consuming. This article presents the development of a finite element model based on an updated Lagrangian formulation. The numerical model is able to predict the depth of subsurface deformation induced in the high- speed machining of Inconel 718 by use of a whisker-reinforced ceramic tool. The effect that the different cutting parameters and tool microgeometries has on subsurface deformation will be investigated both numerically and experimentally. This research article also addresses the temperature distribution in the workpiece and the connection it could have on the wear of the cutting tool. The correlation of the numerical and experimental investigations for the subsurface deformation has been measured by the use of the coefficient of determination, R2. This confirms that the finite element model developed here is able to simulate this type of machining process with sufficient accuracy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.