241
Views
6
CrossRef citations to date
0
Altmetric
Articles

Investigation on thrust force in rotary ultrasonic drilling of CFRP using Brad drill

, &
Pages 971-984 | Published online: 05 Aug 2019
 

Abstract

The carbon fiber reinforced plastic (CFRP) has been widely used in manufacturing industry due to its excellent mechanical and physical properties. Brad drill, as a representative of new-type structural drills, is applied in processing of CFRP. Meantime, rotary ultrasonic drilling (RUD) is regarded as a superior method for machining composite materials, due to its outstanding performance in lowering thrust force and improving processing quality. However, there are few reports about RUD with Brad drill in CFRP drilling. In this study, the theoretical model of thrust force for RUD of CFRP using Brad drill is developed. The dynamic uncut chip thickness and average uncut chip thickness in RUD are obtained based on kinematic characteristics analysis. After that, the structure of Brad drill is analyzed and thrust force of the cutting lip is molded. Then a theoretical model is proposed to predict the thrust force. Finally, pilot experiments are conducted for the model verification. Experimental results show that the trends of thrust force agree well with the thrust force model and the prediction error is less than 10%.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51675284).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.