458
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Cryogenic machining of elastomers: a review

, , & ORCID Icon
Pages 477-525 | Published online: 27 Apr 2021
 

Abstract

Elastomers have visco-elastic behavior and are widely used in general utility as well as sophisticated applications. Generally, elastomer components are produced by molding process. But it is not economical for complicated geometrical elastomeric components of small batch size. Hence, machining is an alternative method of the molding. However, high elasticity, low Young’s modulus and low thermal conductivity in addition to the difficulty of holding elastomer component hinder its machining. To address these challenges, in last two decades, cryogenic assisted milling/turning, cryogenic abrasive jet micromachining (CAJM), ultra-high-pressure water jet machining and low-power CO2 laser cutting were reported and noticed that both machining parameters and cryogenic condition affect the quality of the end-product. The structure-property changes on the surface of elastomer due to cryogenic condition helps in improvement of cutting force, erosion rate, chip formation, surface morphology, and reduction in the abrasive particle embedding at the machined surface. In addition to this, cryogenic assisted machining is a safe environmental alternative approach and it reduces the possibility of abrasive contamination at the machined surface. Hence, this article makes a comprehensive review of developments in elastomer machining over the last two decades and discusses the pros and cons of the same.

Acknowledgments

The authors of this article would like to acknowledge the support rendered by the Manipal Academy of Higher Education towards the initiation of the doctoral study of the first author, in the field of cryogenic machining of elastomers.

Declaration of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.