724
Views
13
CrossRef citations to date
0
Altmetric
Review Article

A review on microholes formation in glass-based substrates by electrochemical discharge drilling for MEMS applications

ORCID Icon, & ORCID Icon
Pages 276-337 | Published online: 11 Apr 2022
 

Abstract

Continuous demands to develop advanced radio-frequency transmission at higher frequencies have initiated glass-based materials as a substrate in radio-frequency micro-electro-mechanical-systems (MEMS) applications. Due to its superior electrical insulation characteristics, glass has lower substrate losses than silicon when an electrical signal is transmitted at higher frequencies. The optical transparent nature of glass substrate makes it an attractive choice for microfluidics and Bio-MEMS applications. Despite having superior properties, glass usage has remained limited mainly due to the lack of suitable micromachining processes. Due to its hard and brittle nature, creating microfeatures by conventional methods has been a challenge. To date, laser ablation and plasma etching have been employed to create micro-size through-holes in glass substrate; however, both have severe process limitations. Electrochemical discharge drilling (ECDD) is an emerging method that possesses similar capabilities as existing technologies at a low cost. Therefore, this manuscript is presented to describe the ECDD process's potential and their hybrid methods in the direction of fabricating micro-holes for MEMS applications. This manuscript includes the fundamental aspects of the ECDD process and a detailed description of components used to develop its various configurations. ECDD-based hybrid methods have also been presented along with their mechanisms and capabilities. The existing challenges and the possible research potentials have been derived based on previously reported capabilities to establish the correlation between the ECDD process and MEMS devices.

Acknowledgments

Tarlochan Singh likes to acknowledge the IIT Bombay for the Institute Postdoctoral Fellowship Scheme.

Additional information

Funding

The authors acknowledge the financial support from the Ministry of Human Resources and Development (MHRD) and the Department of Scientific and Industrial Research (DSIR) through (DSIR/PACE/TDD-IMPRINT/7510). This work has been partially carried out as a part of the Impacting Research Innovation and Technology (Imprint) Project, initiated by MHRD, Indian Government, under the research grant 10007457.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.