2,524
Views
17
CrossRef citations to date
0
Altmetric
Articles

Reliability of metrics associated with a counter-movement jump performed on a force plate

ORCID Icon, , & ORCID Icon
Pages 235-243 | Published online: 10 Aug 2017
 

ABSTRACT

The counter-movement jump is a consequence of maximal force, rate of force developed, and neuromuscular coordination. Thus, the counter-movement jump has been used to monitor various training adaptations. However, the smallest detectable difference of counter-movement jump metrics has yet to be established. The objective of the present study was to measure the reliability of counter-movement jump metrics, including rate of force development, flight time, time to max force, and max force. Twenty-nine male participants (mean age 25 ± 3 years) were divided into three groups. Each participant performed five counter-movement jumps on a force plate, on three consecutive days. Flight time detected trivial changes, (effect size < .2) and typical error of measurement of .25%; max force detected small changes (effect size < .5) with a typical error of measurement of .3%; rate of force development detected small to medium change (effect size .5–.8) with a typical error of measurement of .3%.

Conflict of Interest

This manuscript is original and not previously published, nor is it being considered elsewhere until a decision is made as to its acceptability by the MPEES Editorial Review Board.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.