230
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Impregnation Solvents on Catalytic Performance of Co-Ru-ZrO2/γ-Al2O3 Catalyst for Fischer-Tropsch Synthesis

, , , &
Pages 704-716 | Published online: 31 Mar 2008
 

Abstract

Used ZrO2 modified γ-Al2O3 as support, Co-Ru catalysts were prepared by incipient impregnation method. The effects of impregnation solvents on the performances of catalysts were examined. The catalyst was prepared with ethanol solution and high Co dispersion was obtained, exhibiting highest activity of CO hydrogenation, very low methane selectivity, and high heavy hydrocarbon C5 + selectivity. The catalysts were prepared with aqueous solution and methanol solution, and the reaction behaviors were similar. The solvent isopropanol caused the lowest catalytic activity and highest methane selectivity. Increasing the reaction temperature enhanced the CO hydrogenation rate, and the CO conversion slightly increased the CO2 selectivity and favored the formation methane and light hydrocarbons, while the chain growth probability decreased. For the catalyst prepared with ethanol, the CO conversion, the CH4 selectivity, and the C5 + selectivity were 94.16%, 5.65%, and 88.2%, respectively, and the chain growth probability was 0.87 at 493 K, 1.5 MPa, 800 h−1, and n(H2):n(CO) = 2.0 in feed.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support by the Ph.D. Foundation of the National Research Council (No. 20050251006).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.