180
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Multi-process Bioremediation as an Improved Approach for Petroleum-contaminated Soil Restoration

, , , &
Pages 94-100 | Received 31 Mar 2011, Accepted 29 Apr 2011, Published online: 30 Nov 2012
 

Abstract

A multiprocess bioremediation approach was applied to treat petroleum-contaminated soil from Dagang Oilfield, China. The bioremediation processes involved the use of four exogenous microbial strains and six herbage plants screened from a large number of species to remove low levels of total petroleum hydrocarbons (TPH) in contaminated soil. The experimental results indicated that the reduction of TPH increased with the improved community structure from the exogenous petroleum-degrading bacteria by over 35% as compared with that using the indigenous bacterial community. The refreshed microbial consortium was also able to accelerate the reduction of TPH via plant roots (phytoremediation) by over 47%. The TPH reduction rate diminished over time. Molecular biomarker ratios such as Ph/nC17, Pr/nC18 increased during the experiment but the ratio of Pr/Ph decreased. The results suggested that the multi-process bioremediation may significantly shorten the bioremediation duration and can be quite effective for treatment of soils contaminated by lower levels of petroleum.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.