308
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of energy demand for natural gas sweetening process using a new energy balance technique

, & ORCID Icon
Pages 827-834 | Published online: 22 Mar 2018
 

ABSTRACT

Absorption by alkanolamine solvents is widely used for acid gas removal in natural gas sweetening plant. In the present research, one of the Iranian gas treating unit, Ilam Gas Treating Company (IGTC), with 3.27 mole % H2S and 3.76 mole % CO2 in the inlet feed gas was simulated using HYSYS V8.8. Piperazine activated solution of MDEA (PZ-MDEA) at various process operating conditions was examined to yield energy demand of natural gas sweetening process using a new energy balance technique. In this technique, the total required energy demand was related to three sections: 1. heat of vaporization, 2. sensible heat and 3. heat of the absorption. Energy balance of the absorption and regeneration columns brings a perspective of energy distribution in the sweetening plant. The effects of CO2 and H2S concentration at inlet feed, PZ mass fraction in activated solution of MDEA and lean amine temperature on energy distribution of the natural gas sweetening process and reboiler duty were investigated. It was finally elucidated that energy demand in the gas sweetening process or duty of reboiler is greatly influenced by heat of vaporization rate. It was also found that the heat of absorption and sensible heat have minor impacts on the energy demand.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.