Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 42, 2007 - Issue 3
205
Views
15
CrossRef citations to date
0
Altmetric
ARTICLES

Modeling and assessing the impact of reclaimed wastewater irrigation on the nutrient loads from an agricultural watershed containing rice paddy fields

, , , &
Pages 305-315 | Received 24 May 2006, Published online: 31 Jan 2007
 

Abstract

Two models were used in concert to predict nutrient loads in a waterbody receiving irrigation return flows from a rice paddy production system. Two irrigation scenarios were simulated, one using reclaimed wastewater as the irrigation water source, the other using water from a surface reservoir designed to supply irrigation water. Total nitrogen (TN) and total phosphorus (TP) loads in irrigation return flows from the rice paddy fields were simulated using the field-scale water quality model Chemical, Runoff and Erosion from Agricultural Management System model for rice paddy fields (CREAMS-PADDY). The output from CREAMS-PADDY was then used as input data for Hydrological Simulation Program-FORTRAN (HSPF) model. HSPF was used to evaluate TN and TP loads in the receiving waterbody at the watershed-scale. CREAMS-PADDY and HSPF were calibrated for both hydrology and water quality using observed data. Both CREAMS-PADDY and HSPF showed good agreement between the observed and simulated data during the calibration and validation periods. Simulation indicated that TN and TP loads from the study paddy fields increased by 207% and 1022% when reclaimed wastewater was used for irrigation compared to conventional irrigation. Irrigating paddy fields (18.8% of the 385 ha study watershed) with reclaimed wastewater increased the TN load at the watershed outlet by 10.3% and TP by 14.0%. The increase in nutrient loads was the result of the high nutrient concentration in the reclaimed wastewater. The procedures used in this research can be used to develop wastewater reuse strategies that minimize environmental impacts on watershed water quality.

Acknowledgments

This research was supported by a grant (code# 4-5-2) from Sustainable Water Resources Research Center of 21st Century Frontier Research Program.

Notes

* Coefficient of determination.

*Root Mean Square Error.

a Soil layers: surface/upper/lower layer/ground water.

a Soil layers: surface/upper/lower/ground water.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.