Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 43, 2008 - Issue 12
148
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Residue-response relationship between PAH body burdens and lysosomal membrane destabilization in eastern oysters (Crassostrea virginica) and toxicokinetics of PAHs

, &
Pages 1373-1380 | Received 28 Mar 2008, Published online: 18 Sep 2008
 

Abstract

This study was undertaken to establish residue-response relationship between lysosomal destabilization and body residues of multiple PAHs in eastern oysters (Crassostrea virginica) exposed to a mixture of PAHs for 25 days in laboratory aquariums. The contaminated oysters were then placed in clean aquariums for 20 days to allow them to depurate and recover. The lysosomal destabilization was linearly correlated with the PAH body burdens. Regression analysis showed that critical body residue (CBR), in terms of lysosomal destabilization (at least 50% of destabilized cells), was found at 2,100 ng/g (9.32 nmol/g) of total PAHs. This CBR is much lower than the CBRs for reproduction and death, confirming that lysosomal destabilization, as a cellular level biomarker, appears to be functioning as an early warning indicator that can be used to detect aquatic contamination much before severe effects are observed. During 25 days of exposure, the lysosomal destabilization and PAH body burdens increased from 32 to 75% and 77 to 5,925 ng/g, respectively. After 20 days of elimination period, the lysosomal destabilization and PAH body burdens decreased to 49% and 2,350 ng/g, respectively. Uptake rates of PAHs showed parabolic shaped correlation with hydrophobicity (K ow ). Uptake rate constants of more hydrophobic PAHs (log K ow > 4.6) had a negative correlation with K ow , implying that hydrophobicity alone is not a satisfactory predictor for these PAHs. Elimination half-lives varied from 4 to 96 days and bioconcentration factors ranged from 650 to 160,000. Fugacity ratios (f o /f w ) indicated that equilibrium still was not reached at the end of the uptake period. Data obtained from the three replicate aquariums, which were operated at the same time under the same condition, showed good replicability (RPD < 30%).

Acknowledgments

This study was partially funded by National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS&T) Project Contract 50-DGNC-5-00003.

Notes

aDry weight.

bWet weight.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.