482
Views
12
CrossRef citations to date
0
Altmetric
ARTICLES

Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands

, , , , &
Pages 789-794 | Published online: 01 Jun 2011
 

Abstract

The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH+ 4-N), sum of nitrate & nitrite (NO X -N), and total nitrogen (TN) by the CWs were 20–55%, 38–84 % and 39–57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture.

Acknowledgments

This work was supported by grants from the Key Science Research Project of Eleven Five-year Plan (2009ZX07106-003, 2008ZX07316-004), Tianjin Project of CAS (TJZX2-YW-07), Agricultural Science and Technology Achievement Transformation Project (2009GB2A100015).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.