Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 47, 2012 - Issue 1
411
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Functions of effective microorganisms in bioremediation of the contaminated harbor sediments

, , , , &
Pages 44-53 | Received 14 Mar 2011, Published online: 04 Jan 2012
 

Abstract

The aim of this study was to apply loess balls containing effective microorganisms (EM) to the remediation of contaminated harbor sediments, and to thereby elucidate the functions of EM in remediation. Changes in physicochemical, biochemical, and microbiological parameters were measured to monitor the remediation process at a laboratory scale. Treatment with high concentrations of EM stock culture and EM loess balls (4%), and a low concentration of EM loess balls (0.1%) that contained molasses (0.05%) contributed to more rapid removal of malodor. Acetic acid, propionic acid, valeric acid, caponic acid, and lactic acid were rapidly removed in the presence of molasses (0.05% w/w) as a carbon nutrient source, indicating enhanced EM activity by amendment with molasses. Fermentation of molasses by EM showed that more acetic acid was produced compared with other organic acids, and that the majority of organic acids were eventually converted to acetate via intermediate metabolites. Sediment bioremediation tests showed there was no significant difference in eubacterial density with the control and the treatments. However, the density of a Lactobacillus sp. in sediments treated with 0.1% and 4.0% EM loess balls was significantly higher than the control, which indicated the bioaugmentation effect of EM loess balls in the polluted sediments. Treatment with EM loess balls and an appropriate amount of molasses, or other nutrients, will facilitate the remediation of polluted marine sediments by malodor removal, via EM degradation or utilization of offensive organic acids. To our knowledge, this is the first study to remediate contaminated marine (harbor) sediments using EM loess balls and to understand EM function during the bioaugmentation process, both in terms of organic acid metabolism and the dynamics of the engineered microbial community.

Acknowledgments

This work was supported by the Year 2009 grant from the Center for Yeongdo Coastal Research, Korea Maritime University. This work is the outcome of a Manpower Development Program for Marine Energy by the Ministry of Land, Transport and Maritime Affairs (MLTM).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.