Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 47, 2012 - Issue 1
108
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Efficiency of a biological aerated filter for the treatment of leachate produced at a landfill receiving non-recyclable waste

, &
Pages 54-59 | Received 16 Mar 2011, Published online: 04 Jan 2012
 

Abstract

The feasibility of a biological aerated filter for the treatment of a partially stabilized leachate from a landfill receiving non-recyclable wastes was assessed in laboratory-scale experiments. Maximum COD, BOD5 and TSS removal efficiencies achievable by the biofilter as well as the optimal hydraulic and organic loading rates were determined by laboratory-scale tests in batch and continuous mode. Experiments in batch mode which lasted for 7 days showed that COD and BOD5 removal efficiencies were stabilized after the second day of operation and kept at around 56–60% and 83–97%, respectively, for the rest of the period studied. The remaining fraction (approximately 40% of the COD) was found to be composed of recalcitrant or not easily biodegradable compounds. The COD and BOD5 removal efficiencies decreased with increasing hydraulic loading rates. The plant worked under optimal conditions at hydraulic loading rates of 0.71 and 1.41 m3/m2d (hydraulic retention times of 15.95 and 7.97 h, respectively) and at COD loading rates below 14 kg COD/m3, where COD removal efficiencies were around 60%. TSS removal efficiencies were not significantly influenced by the hydraulic loading rate. The results obtained demonstrated the feasibility of a biological aerated filter for the removal of the biodegradable fraction of the organic matter contained in the leachate. However, a physicochemical process was found to be necessary as pre- or post-treatment for the removal of the recalcitrant fraction.

Acknowledgments

We are grateful to Fomento de Construcciones y Contratas S.A. (FCC) for allowing the collection of leachate samples from the Alhendín landfill site. The study was partially funded by the Spanish Ministry of Science and Technology (Project FIT-050000-2002-74). The work was supported by a Fellowship funded by the Spanish Ministry of Science and Education.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.