Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 3
250
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Biodegradation of methane, benzene, and toluene by a consortium MBT14 enriched from a landfill cover soil

, &
Pages 273-278 | Received 04 May 2012, Published online: 17 Dec 2012
 

Abstract

In this study, landfill cover soil was used as an inoculum source to enrich a methane, benzene, and toluene-degrading consortium MBT14. Under a single substrate, the maximum degradation rates of methane, benzene and toluene were 1.96, 0.15, and 0.77 mmole g-DCW−1 h−1, respectively. Although the coexistence of benzene and toluene inhibited the methane degradation rates, the consortium was able to simultaneously degrade methane, benzene and toluene. Methane had an insignificant effect on benzene or toluene degradation. Based on 16S rDNA sequencing analysis, Cupriavidus spp. are dominant in the consortium MBT14. The combined results of this study indicate that the consortium MBT 14 is a promising bioresource for removing CH4, benzene, and toluene from a variety of environments.

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (MEST) (NRL program, R0A-2008-000-20044-0).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.