Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 5
185
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Surfactant-enhanced ozone sparging for removal of organic compounds from sand

, &
Pages 526-533 | Received 05 Jun 2012, Published online: 05 Feb 2013
 

Abstract

An innovative surfactant-enhanced ozone sparging (SEOS) technique was developed in this study. The synergistic effect of simultaneous surfactant and ozone application on the removal of organic contaminants in an aquifer during air sparging was investigated. Using laboratory-scale one- and two-dimensional physical models packed with water-saturated sand, air sparging and ozone sparging were implemented either at high or low level surface tension of the groundwater. A water-dissolved chemical (fluorescein sodium salt) and a nonaqueous phase liquid (n-decane) were used as the representative contaminants. Sodium dodecylbenzene sulfonate was used for sparging experiments at low level surface tension. Ozone sparging at low surface tension (SEOS) was found to be the most efficient process for the removal of organic chemicals, among AS (air sparging at high surface tension), SEAS (surfactant-enhanced air sparging, air sparging at low surface tension), and OS (ozone sparging at high surface tension), based on the results from a one-dimensional column study. Two-dimensional model experiments also showed that SEOS is more efficient than conventional AS processes. The increased air saturation and sparging influence zone achieved by surfactant application, and the oxidative power of ozone are responsible for the enhanced removal of contaminants from the aquifer. Considering that the application of conventional AS is limited to volatile contaminants, and that OS has a very narrow influence zone, SEOS can be an useful option for the removal of contaminants of low vapor pressures from an expanded zone of influence.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.