Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 12
138
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Formaldehyde degradation by Ralstonia eutropha in an immobilized cell bioreactor

&
Pages 1557-1572 | Received 12 Nov 2012, Published online: 26 Jun 2013
 

Abstract

The formaldehyde (FA) degradation ability of the loofa-immobilized Ralstonia eutropha cells in a packed bed reactor was modeled using a statistically based design of the experiment (DOE) considering application of response surface methodology (RSM). The simultaneous effects of four operative test factors on the cells performance in terms of FA degradation rate and extent of the chemical oxygen demand (COD) removal were monitored. The combination of factors at initial FA concentration of 629.7 mg L−1h−1, recycling substrate flow rate of 4.4 mL min−1, aeration rate of 1.05 vvm, and the system's temperature of 28.8°C resulted the optimal conditions for the FA biodegradation rate and COD removal efficiency. Loofa porous structure was found to be a protective environment for the cells in exposing to the toxic substances and the scanning electron microscopy (SEM) images revealed extensive cells penetration within this support. Oxygen transfer analysis in the form of evaluating K la value was also carried out and at the optimum conditions of the DOE was equaled to 9.96 h−1and oxygen uptake rate was 35.6 mg L−1h−1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.