Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 4
418
Views
20
CrossRef citations to date
0
Altmetric
ARTICLES

Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water

, &
Pages 391-402 | Received 11 Aug 2016, Accepted 31 Oct 2016, Published online: 14 Dec 2016
 

ABSTRACT

In this study, natural organic matter (NOM) in source water, as well as the treated water after coagulation with or without potassium permanganate (KMnO4) preoxidation, was characterized by using high performance size exclusion chromatography with organic carbon detector (HPSEC-OCD) and fluorescence excitation emission matrices (F-EEMs) with parallel factor (PARAFAC) analysis. Bulk parameters, such as dissolved organic carbon (DOC) and ultraviolet light absorbance at 254 nm (UV254), were also analyzed. The results show that KMnO4 preoxidation caused the breakdown of high molecular weight (MW) organics into low MW organics. All organics, whether those that existed in the source water or those generated by KMnO4 preoxidation, could be partly removed by coagulation. Combining the derived organic fractions obtained from HPSEC-OCD with peak-fitting and from F-EEMs with PARAFAC on the same sample, humic substances have been specified as the main organic composition. Further, the predictive models for trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAAFP) based on organic fractions from HPSEC-OCD have higher accuracy than those based on the components from PARAFAC modeling. These models provide useful tools to specify the organic fractions from HPSEC-OCD and F-EEMs that constitute active precursors towards trihalomethanes (THMs) or haloacetic acids (HAAs) formation in water. Further, by knowing the major organic precursors, it would facilitate choosing the appropriate water treatment process for disinfection by-products (DBPs) control.

Funding

The financial support provided to this study by the Ministry of Science and Technology, Taiwan (Contract No. 101-2221-E-006-156-MY3) is greatly appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.