Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 9
317
Views
12
CrossRef citations to date
0
Altmetric
Articles

Adsorption studies on the treatment of battery wastewater by purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs)

, , , , &
Pages 827-839 | Received 25 Aug 2018, Accepted 14 Mar 2019, Published online: 09 Apr 2019
 

Abstract

Fe–Ni/kaolin catalyst was used for the production of carbon nanotubes (CNTs) via catalytic chemical vapour deposition followed by acid purification treatment and functionalization with polyethylene glycol to give purified carbon nanotubes (P-CNTs) and polyethylene glycol carbon nanotubes (PEG-CNTs), respectively. The as-synthesized CNTs, P-CNTs and PEG-CNTs were characterized by high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Fourier transform infrared and Brunauer Emmett Teller (BET). The adsorption behaviour P-CNTs and PEG-CNTs to remove specifically Cr and Zn from battery wastewater were examined by the batch adsorption process as a function of different contact time, adsorbent dosage and temperature. The HRSEM/HRTEM/BET analysis confirmed that both nano-adsorbents were tube-like in nature, high porosity and crystalline, with PEG-CNTs possessing high surface area (970.81 m2/g) than P-CNTs (781.88 m2/g). The optimum contact time and adsorbent dosage to remove Cr and Zn by P-CNTs and PEG-CNTs were 90 and 50 min and 0.3 g, respectively. Under the applied conditions, PEG-CNTs exhibited high adsorption capacity than P-CNTs for the selected heavy metals. The adsorption equilibrium data were better fitted to the Freundlich model while the kinetic data conformed to the pseudo-second-order model. Thermodynamic studies demonstrated the feasibility and endothermic nature of the system. This study demonstrated that both nano-adsorbents purify battery wastewater and with better performance by PEG-CNTs.

Additional information

Funding

This work was supported by Tertiary Education Tax fund Nigeria (TETFUND/FUTMINNA/NRF/2014/01) and Centre of Genetic Engineering and Biotechnology, Federal University of Technology, Minna, Nigeria.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.