Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 13-14
128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe3O4 nanocomposite

ORCID Icon, , &
Pages 1146-1167 | Received 06 Oct 2022, Accepted 12 Dec 2022, Published online: 05 Jan 2023
 

Abstract

The presence and removal of heavy metals such as Cu(II) as well as Cr(VI) in petroleum refinery wastewater calls for concerted efforts due to their mobility, toxicity, bioaccumulation, and non-biodegradability in the environment. In this present work, zinc oxide (ZnO), iron oxide (Fe3O4) nanoparticles and ZnO/Fe3O4 nanocomposites were synthesized via simple sol-gel and chemical reduction methods; characterized using different analytical tools and then applied as nanoadsorbent to sequester Cu(II) and Cr(VI) ions from Petroleum Refinery wastewater via batch adsorption process. Cu(II) and Cr(VI) adsorption processes were examined with respect to contact time (kinetic effect), nanoadsorbent dosage, isotherm equilibrium, and thermodynamic parameters. ZnO/Fe3O4 nanocomposites with higher surface area (39.450 m2/g) have a mixture of rod-like and spherical shapes as compared to ZnO and Fe3O4 nanoparticles with spherical shape only and surface areas of 8.62 m2/g and 7.86 m2/g) according to the high-resolution scanning electron microscopy (HRSEM) and Brunauer–Emmett–Teller (BET) analysis. The X-ray diffractometer (XRD) results revealed the formation of hexagonal wurtzite structure of ZnO and the face-centered cubic structure phase of Fe3O4 nanoparticles, after the formation of the ZnO/Fe3O4 nanocomposites the phases of the nanoparticles were not affected but the diffraction peaks shifted to higher 2θ degree. The average crystallite size of ZnO and Fe3O4 nanoparticles and ZnO/Fe3O4 nanocomposites were 20.12, 26.36 and 14.50 nm respectively. The maximum removal efficiency of Cu (II) (92.99%) and Cr (VI) (77.60%) by ZnO/Fe3O4 nanocomposites was higher than 85.83%; 65.19% for Cu (II) and 80.57%; 62.53 for Cr (VI) using ZnO and Fe3O4 nanoadsorbents individually under the following conditions: contact time (15), dosage (0.08 g) and temperature (30 °C). The experimental data for Cu (II) and Cr (VI) ion removal fitted well to the pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic study suggested that the removal of the two metal ions from petroleum wastewater was endothermic. The reusability study after the fourth adsorption-desorption cycle indicated the stability of ZnO/Fe3O4 nanocomposites with 85.51% and 69.42% removal efficiency of Cu (II) and Cr (VI). The results showed that ZnO/Fe3O4 nanocomposite achieves higher performance than ZnO and Fe3O4 alone in the removal of Cu (II) and Cr (VI) ions from the petroleum refinery wastewater.

Acknowledgments

The authors appreciate the contribution of the following people for their technical assistance: Dr. Remy Bucher (XRD analysis, iThemba Labs, South Africa); Dr. Franscious Cummings (HRSEM/HRTEM/SAED/EDS) analysis, Physics department, University of the Western Cape (UWC), South Africa); and Prof. W.D. Roos for XPS analysis. Mr. Sandeeran Govender (BET analysis), Chemical Engineering Department, University of Cape Town, South Africa.

Declaration of competing interest

There are no conflicts to declare

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.