969
Views
85
CrossRef citations to date
0
Altmetric
Original Articles

A Review of Current Toxicological Concerns on Vanadium Pentoxide and Other Vanadium Compounds: Gaps in Knowledge and Directions for Future Research

&
Pages 289-306 | Published online: 13 Aug 2009
 

Abstract

Vanadium pentoxide (V2O5) and other inorganic vanadium compounds have recently been evaluated by several occupational exposure limit (OEL) setting (occupational exposure limit, OEL) committees and expert groups in response to the publication of several new studies, including the U.S. National Toxicology Program (CitationNTP, 2002) carcinogenicity study of inhaled V2O5 in rats and mice, which concluded that clear evidence of lung tumors was seen in mice of both genders and that there was some evidence of carcinogenicity in male rats. This study reviews the expert evaluations of several OEL committees and expert groups and attempts to understand the strengths and weaknesses in their scientific arguments. This study also evaluates some key studies relating to potential genotoxicity, carcinogenicity, and respiratory effects of vanadium compounds and discusses how they might elucidate the mechanism(s) by which V2O5 induces lung cancer in mice. All expert groups appear to agree that the lung tumors induced in mice in the CitationNTP (2002) study are a site-specific response and, in general, verify that existing in vitro and in vivo studies suggest that tumors were induced by a secondary mechanism (presumably non-genotoxic), which is supported, though not conclusively, by a mechanistic data set. As some vanadium compounds produce a range of DNA and chromosome damage, there is no consensus on which of these changes is critical for the carcinogenic process for V2O5 or whether the findings for the lung tumors seen in mice exposed to V2O5 can be extrapolated to other inorganic vanadium compounds. As such, the various expert committees used the evidence differently, some to read across, i.e., to predict an endpoint for a substance based on the endpoint information of another with similar characteristics (e.g., physicochemical properties [solubility, bioaccessibility, bioavailability], structure, fate [toxicokinetics], and toxicology) for carcinogenicity from V2O5 to other inorganic vanadium compounds. It is noteworthy that the toxicity of metals does not necessarily relate to carcinogenicity in a direct manner; thus, no assumptions should be made a priori when trying to extrapolate from V2O5 to other inorganic vanadium compounds. Recent studies evaluated in this review provided some further insights into possible mechanisms but do not cover all relevant endpoints, address only a limited number of vanadium compounds, and have not established no-effect thresholds for carcinogenicity or respiratory tract irritation. Thresholds need to be established in order for arguments to be made for setting a health-based OEL for non-genotoxic or secondary genotoxic carcinogens. In conclusion, important knowledge gaps preclude confident classification and risk assessment for all vanadium compounds. Evidence suggests that further research that may address some of these critical gaps is needed.

The authors acknowledge sponsorship by the Vanadium International Technical Committee (Vanitec) for the preparation of this publication.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.