441
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

The Influence of Genetic Polymorphisms on Population Variability in Six Xenobiotic-Metabolizing Enzymes

, , , , , , & show all
Pages 307-333 | Published online: 06 Oct 2009
 

Abstract

This review provides variability statistics for polymorphic enzymes that are involved in the metabolism of xenobiotics. Six enzymes were evaluated: cytochrome P-450 (CYP) 2D6, CYP2E1, aldehyde dehydrogenase-2 (ALDH2), paraoxonase (PON1), glutathione transferases (GSTM1, GSTT1, and GSTP1), and N-acetyltransferases (NAT1 and NAT2). The polymorphisms were characterized with respect to (1) number and type of variants, (2) effects of polymorphisms on enzyme function, and (3) frequency of genotypes within specified human populations. This information was incorporated into Monte Carlo simulations to predict the population distribution and describe interindividual variability in enzyme activity. The results were assessed in terms of (1) role of these enzymes in toxicant activation and clearance, (2) molecular epidemiology evidence of health risk, and (3) comparing enzyme variability to that commonly assumed for pharmacokinetics. Overall, the Monte Carlo simulations indicated a large degree of interindividual variability in enzyme function, in some cases characterized by multimodal distributions. This study illustrates that polymorphic metabolizing systems are potentially important sources of pharmacokinetic variability, but there are a number of other factors including blood flow to liver and compensating pathways for clearance that affect how a specific polymorphism will alter internal dose and toxicity. This is best evaluated with the aid of physiologically based pharmacokinetic (PBPK) modeling. The population distribution of enzyme activity presented in this series of articles serves as inputs to such PBPK modeling analyses.

Research supported by a U.S. Environmental Protection Agency/State of Connecticut Cooperative Research Agreement, number 82975901. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the State of Connecticut, the University of Connecticut, Clark University, or the U.S. Environmental Protection Agency.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.