679
Views
61
CrossRef citations to date
0
Altmetric
Original Articles

The Potential of Selected Brominated Flame Retardants to Affect Neurological Development

&
Pages 411-448 | Published online: 25 Jun 2010
 

Abstract

Various brominated flame retardants (BFR), including polybrominated diphenyl ether (PBDE) congeners, hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA), are commonly used in household items and electronics and have been detected in the environment and/or the bodily fluids of people, including children. Some studies in animals suggest that exposure to PBDE congeners, HBCD, or TBBPA during the perinatal period may affect locomotor activity and/or memory and learning. Epidemiological studies showing similar effects in humans, however, are lacking. To assess whether an association exists between perinatal exposure and development of consistent neurobehavioral alterations, published animal studies investigating perinatal exposure to PBDE congeners, HBCD, or TBBPA with specific neurobehavioral evaluations—particularly, assessments of motor activity—were reviewed for consistency of results. Our analysis shows that although the majority of studies suggest that perinatal exposure affects motor activity, the effects observed were not consistent. This lack of consistency includes the type of motor activity (locomotion, rearing, or total activity) affected, the direction (increase or decrease) and pattern of change associated with exposure, the existence of a dose response, the permanency of findings, and the possibility of gender differences in response. Interestingly, Good Laboratory Practices (GLP)-compliant studies that followed U.S. Environmental Protection Agency (EPA)/Organization for Economic Cooperation and Development (OECD) guidelines for developmental neurotoxicity testing found no adverse effects associated with exposure to PBDE209, HBCD, or TBBPA at doses that were orders of magnitude higher and administered over longer durations than those used in the other studies examined herein. The lack of consistency across studies precludes establishment of a causal relationship between perinatal exposure to these substances and alterations in motor activity.

The authors thank Drs. Marcia L. Hardy and J. Craig Rowlands for their thoughtful review of the draft of this article. This analysis was supported through funds supplied by the Dow Chemical Corporation and Albemarle Corporation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.