99
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Carbon assimilation, 𝛅13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China

, , , &
Pages 525-532 | Published online: 21 Nov 2008
 

Abstract

We investigated the physiological responses of Elaeagnus angustifolia to variation in groundwater depth. Elaeagnus angustifolia seedlings were grown in the Minqin desert in lysimeters supplied with underground water at the soil depth of 1.40 m and 3.40 m. Results showed that constant access to groundwater allowed plants supplied with water at the lower soil layer to meet their water requirement and, consequently, they were not affected by water stress. There were no differences in A max (the net CO2 assimilation rate under conditions of photosynthetically photon flux density and CO2 saturation), J max (maximum rate of electron transport) and stomatal conductance between the two underground water treatments. However, plants with deeper groundwater had a significantly higher V cmax (i.e. a higher carboxylation efficiency of Rubisco) and mesophyll conductance resulting in increased photosynthesis measured at the CO2 growth condition (A) and, consequently higher intrinsic water-use efficiency (WUE). However, respiration was also increased in plants grown with deeper groundwater. This may have offset the increased A and led to a similar long-term WUE, as expressed by carbon isotope discrimination (Ξ΄13C), between the two ground water treatments. In the present study, we also found a high foliage nitrogen concentration in the E. angustifolia plants (3.75% on average), that may be very significant ecologically in improving soil properties. The physiological traits of E. angustifolia found in this study confirm that the use of perennial phreatophytic, nitrogen fixing species has significant potential to positively impact soil fertility and carbon sequestration under environmental conditions found in the Minqin desert.

Acknowledgements

The authors would like to extend their sincere thanks to Guangdong Zhao and Dino Magnani for their technical assistance. The authors are also grateful to the Gansu Desert Control Research Institute for their experimental facilities maintenance. This work has been funded by: Project of National Natural Science Foundation of China (No. 30771718 and No.39990490); Italian National Research Council and Chinese Academy of Forestry scientific and technologic agreement 2008-2010.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 234.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.