164
Views
7
CrossRef citations to date
0
Altmetric
Articles

The effects of low-frequency magnetic field exposure on the growth and biochemical parameters in lupin (Lupinus angustifolius L.)

, , &
Pages 504-511 | Published online: 27 May 2016
 

Abstract

The influence of frequent magnetic field stimulation (MFS) on plants is the subject of intense research. The effects of MFS on plants vary depending on its intensity, time of exposure or application form. The effects of low-frequency magnetic field in two doses, 0.2 mT, 16 Hz (MFS-1) and 0.2 mT, 50 Hz (MFS-2) on the mitotic activity and selected physiological and biochemical parameters in narrow-leafed lupin (Lupinus angustifolius L.) were evaluated. Non-exposed plants were used as control (C). It was noted that after the exposure of plants to MFS-1, the biometric parameters, mitotic activity, BSA and GPOX activity remained at the control level. However, a significant decrease in the assimilation pigment content was observed. On the other hand, the exposure of plants to MFS-2 was manifested by a decrease in the biometric parameters, mitotic activity and the assimilation pigment content, but an increase in GPOX activity in roots was noted.

Acknowledgements

The authors would like to thank Dr Agata Dziwulska-Hunek, the Department of Physics, University of Life Sciences in Lublin, for valuable technical support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 234.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.