310
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Morphological and biochemical changes in maize under drought and salinity stresses in a semi-arid environment

, , , , &
Pages 396-404 | Received 16 Jan 2019, Accepted 07 May 2019, Published online: 04 Jul 2019
 

Abstract

This study investigated some morphological and biochemical responses of maize to drought and salinity in open field in Tunisia with the aim of gaining insights into tolerance mechanisms. After seedling emergence, five treatments were applied until maturity: optimal water supply (control, 100% of maximum evapotranspiration - ETM); irrigation at 70% ETM (moderate drought) and at 35% ETM (severe drought); optimal supply of water containing 3 g NaCl L−1 (moderate salinity) and 6 g NaCl L−1 (severe salinity). Here, we demonstrated that extreme drought and salinity severely decreased the leaf area (−74% and −55%, respectively) and the above-ground biomass (−35% and −31%, respectively) at silking stage, indicating that the photosynthetic leaf apparatus is highly sensitive and that drought has a greater effect than salinity. Grain yield losses were also exacerbated under extreme stress conditions, viz. severe drought (−85% versus controls) and severe salinity (−73%), while productivity under moderate salinity approximated that of moderate drought, possibly due to increases in leaf chlorophyll and carotenoid content and K/Na ratio. The leaf area and its relative water content were positively correlated with grain yield under both salinity and drought stresses, and may therefore be used as markers for effective screening of maize genotypes for better stress tolerance.

Acknowledgements

The authors wish to thank Prof. Sifi Bouaziz, head of the Laboratory of Agronomic Sciences and Technical at the National Institute of Agronomic Research (INRAT) in Tunisia. Our sincere thanks also to Tessa Say for revising the English text.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 234.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.