52
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hybrid metaheuristic model based performance-aware optimization for map reduce scheduling

&
Pages 776-788 | Received 20 Feb 2023, Accepted 07 Jul 2023, Published online: 21 Nov 2023
 

Abstract

Because of the rapid rise in the count of corporations using cloud-dependent infrastructure as the foundation for big data storing and analysis. The fundamental difficulty in scheduling big data services in cloud-dependent systems is ensuring the shortest possible makespan while simultaneously reducing the number of resources being used. We have created a new, secure map reduce scheduling method that functions as follows. Initially, the cloud architecture is designed and the tasks are generated. In the pre-processing phase, the huge set of tasks was processed by the map-reduce scheduling framework. Afterward, the optimal task scheduling task is conducted which utilizes a hybrid algorithm named Tunicate Combined Moth Flame Algorithm (TCMFA), which provides better task scheduling via providing optimal makespan, execution time, and security. This proposed TCMFA is the hybridization of both Moth Flame Optimization (MFO) and Tunicate Swarm Algorithm (TSA). The error rate of the TCMFA gets reduced to 320 approximately over other conventional methods such as RSA, ACO, GHO, BTS, OWPSO, BES, PRO, SOA, COOT, TSA & MFO which proves the accuracy of our TCMFA and makes it more efficient and secure for optimal map-reduce scheduling.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.