405
Views
21
CrossRef citations to date
0
Altmetric
Article

Role of expanded clay aggregate, metakaolin and silica fume on the of modified lightweight concrete properties

, ORCID Icon, , &
Pages 145-156 | Received 10 Nov 2020, Accepted 03 Feb 2021, Published online: 16 Feb 2021
 

ABSTRACT

This investigation aimed to assess the effect of micro-cementitious materials on the mechanical properties and sulphate resistance of modified eco-efficient lightweight concrete (MDLWC). A modified lightweight concrete (MDLWC) was produced by mixing Light-expanded clay aggregate (LECA) with normal coarse aggregate (dolomite cushed rock). The impact of using different percentage of micro-cementitious materials which was micro silica fume (5–20%) and metakaolin(10–35%) on the mechanical properties (compressive strength, splitting tensile and flexural strength), waves transmission velocity of the ultrasonic pulses and sulphate resistivity of MDLWC was studied. The overall results illustrated that the use of micro-cementitious materials in MDLWC caused an enhancement on MDLWC properties. However, the MDLWC specimens containing micro silica fume showed better results than metakaolin. The best results were observed while using samples containing 10% micro silica fume and 30 % metakaolin individually or combined. In addition, the usage of combined mixture of 10% micro silica fume and 30% metakaolin MDLWC mix showed the best improvement rate in compressive, splitting tensile and flexural strengths by 25, 53.3 and 66.6%, respectively, compared to control MDLWC specimens. On the other hand, the direct empirical equations were proposed on the basis of strong and nonlinear regression analysis using the test data to predict the mechanical properties of MDLWC relationships, rationally. Experimental tests were conducted on ultrasonic pulses velocity, which showed good correlation equation strength of MDLWC. Scanning electron microscopy illustrated that the pores of concrete is smaller for SF and MK individually or combined with MDLWC compared to the control concrete, demonstrating an enhancement within the interfacial microstructure with the pozzolanas incorporation. The previous difference could be explained due to the concrete strength and sulphate penetrability to an extent.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 102.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.